Doping the cage. Re@Au11Pt and Ta@Au11Hg, as novel 18-ve trimetallic superatoms displaying a doped icosahedral golden cage.

نویسنده

  • Alvaro Muñoz-Castro
چکیده

Expanding the versatility of well defined clusters is a major concern in the design of building blocks towards functional nanostructures. W@Au12 is a prototypical binary bare superatomic cluster involving an icosahedral symmetry, which has been discussed in the literature, precluding the proposal of several endohedral d-block and f-block element structures within a golden cage. Here we pursue the construction of related trimetallic clusters, which has been explored to a lesser extent. Our results expose the great advantages of involving heterocages in the superatom approach, unraveling Re@Au11Pt and Ta@Au11Hg as novel trimetallic candidates. Re@Au11Pt exhibits an electron-deficient element in the cage, and an endohedral atom with an extra electron. In contrast, Ta@Au11Hg is conceived as having an icosahedral cage with an extra electron, and an electron-deficient endohedral element. These new clusters follow the eighteen valence electron principle, with similar characteristics to their W@Au12 parent. This leads to stable clusters with an electronic structure formally described by the 1s21p61d10 closing shell order, showing an interesting approach to design ternary superatoms, where the variation of valence electrons occurs in both cage and endohedral sites. Moreover, the cage doping appears as a useful approach to further evaluate the formation of magnetic superatoms, and also the construction of larger clusters by fusing different icosahedral structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of golden cages by encapsulation of a single transition metal atom

Golden cage-doped nanoclusters have attracted great attention in the past decade due to their remarkable electronic, optical and catalytic properties. However, the structures of large golden cage doped with Mo and Tc are still not well known because of the challenges in global structural searches. Here, we report anionic and neutral golden cage doped with a transition metal atom MAu16 (M = Mo a...

متن کامل

Optoelectronical Properties of a Metalloid-Doped B12N12 Nano-Cage

Abstract: The opteoelectronical properties of B12N12 nano-cage was investigated in thepresent of some metals by density functional theory (DFT). After the adsorption of atoxic molecule with all complexes, the electronic properties in B11GeN12 nano-cagewere significantly increased. The UV-Vis adsorption and Infrared spectroscopy ofcyanogen chloride over the B11GeN12 have ...

متن کامل

Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions.

The controlled assembly of superatomic nanocluster ions synthesized in the gas phase is a key technology for constructing a novel series of functional nanomaterials. However, it is generally difficult to immobilize them onto a conductive surface while maintaining their original properties owing to undesirable modifications of their geometry and charge state. In this study, it has been shown tha...

متن کامل

The NBO, AIM, MEP, thermodynamic and quantum parameters investigations of Pyrrole 2-carboxylic acid molecule adsorption on the pristine and Ni doped B12N12 nano cage

ABSTRACT The main objective of this work is to investigate the adsorption of Pyrrole 2-carboxylic acid (PCA) from O, N and C sites on the surface of pristine and Ni doped B12N12 nano cage by using density functional theory (DFT). The results of adsorption energy indicate that the adsorption of PCA on the surface of B12N12 and NiB11N12 is exoth...

متن کامل

Structural transition of gold nanoclusters: from the golden cage to the golden pyramid.

How nanoclusters transform from one structural type to another as a function of size is a critical issue in cluster science. Here we report a study of the structural transition from the golden cage Au(16)(-) to the pyramidal Au(20)(-). We obtained distinct experimental evidence that the cage-to-pyramid crossover occurs at Au(18)(-), for which the cage and pyramidal isomers are nearly degenerate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2017